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The steady flow of a suspension of closely fitting, neutrally buoyant, incompressible 
and elastic spheres through a circular cylindrical tube is investigated under the 
assumption that lubrication theory is valid in the fluid region. A series solution giving 
the displacement field of an elastic incompressible sphere under axisymmetrically 
distributed surface tractions is developed. It is found that, for closely fitting particles, 
flow properties of the suspension are strongly dependent on the shear modulus of the 
elastic material and the velocity of the particle. 

1. Introduction 
The steady flow of a s6spension of neutrally buoyant particles through a circular 

cylindrical tube has been extensively considered as a model of capillary blood flow. 
Rigid particles of many different shapes have been used to model the blood cells, e.g. 
spherical particles (Wang & Skalak 1969; Hochmuth & Sutera 1970; Bungay & 
Brenner 1973), spheroids (Chen & Skalak 1970), flat disks (Bugliarello & Hsaio 1967; 
Lew & Fung 1969; Aroesty & Gross 1970) and particles shaped like red blood cells 
(Skalak, Chen & Chien 1972). Experimental studies concerning the flow behaviour of a 
variety of rigid models are also available, including disks, diskoids, spherical caps and 
particles shaped like red cells (Sutera & Hochmuth 1968; Hochmuth & Sutera 1970). 

In  recent years intensive theoretical and experimental research has been directed 
towards the determination of mechanical properties of the constituents of blood and 
the study of flow properties of suspensions of flexible particles (Sutera, Seshadri & 
Hochmuth 1970; Cokelet 1976). Current developments in the understanding of material 
properties of blood cells have led to the formulation of more complex theoretical 
models for the blood cells. The motion of neutrally buoyant liquid drops with surface 
tension has been investigated by Hyman & Skalak (1972). Lighthill (1968) and Fitz- 
Gerald (1969) applied lubrication theory to analyse the axisymmetric flow of neutrally 
buoyant compressible particles in fluid-filled tubes. They assumed that for any particle 
there exists a reference pressure such that the particle has the same diameter as the 
tube when this reference pressure is uniformly applied. Moreover these compressible 
particles undergo radial (in the sense of cylindrical co-ordinates) deflexions propor- 
tional to the amount by which the local lubrication pressures exceed the reference 
pressures. A more realistic representation of a red blood cell as an elastic shell filled 
with an incompressible, viscous fluid has been developed by Zarda, Chien & Skalak 
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(1977a). The capillary flow problem for this model is given by Zarda, Chien & Skalak 
(1977 b) .  

This paper investigates the steady motion of an elastic incompressible sphere 
through a circular cylindrical tube filled with viscous fluid. This study was originally 
motivated by an interest in the flow of white blood cells in narrow capillary blood 
vessels (see Bagge 1975). However, the theory may be applicable also to some other 
systems involving particle-fluid interactions, such as the  motion of red blood cells in 
narrow capillaries and transport of encapsulated solid matter in pipelines. I n  such 
cases, the present model may serve as a quaIitative guide to the nature of results to be 
expected. 

The present theory is different from the previous theories of Lighthill (1968) and 
Fitz-Gerald (1969) in several ways and hence not directly comparable. First, the 
particle is considered as a three-dimensional elastic continuum in the present treat- 
ment rather than as an isolated response to the local pressure. Second, the incom- 
pressible elastic particles treated herein do not deflect in any way under any uniform 
reference pressure. There are also important differences in the form of the equation 
expressing the condition of zero net drag on the particle. Lighthill (1968) and Fitz- 
Gerald (1969) assumed that the force due to the pressure drop across the particle is 
approximately equal to the resultant of shear stresses acting along the surface of the 
particle. It will be shown in § 3 by the use of singular perturbation expansions derived 
by Bungay & Brenner (1973) for closely fitting rigid spheres that this assumption 
leads to substantial errors in the evaluation of the pressure drop across the particle. 

The suspending fluid in the present treatment is assumed to be incompressible and 
Newtonian. The Reynolds number in the microcirculation is typically of the order of 

Hence the fluid inertial terms are neglected. Further, it  is assumed that the 
clearance between the cell and the capillary walls is sufficiently small that lubrication 
theory may be applied. Lubrication theory is known to give accurate results for closely 
fitting rigid particles (Skalak et al. 1972). 

There is an extensive literature on the theory of linear elasticity concerning the 
equilibrium and vibrations of elastic spheres (Love 1944). The general solution to the 
equations of equilibrium of an incompressible elastic medium in spherical co-ordinates 
is given by Lamb (1945). In  the present treatment, Lamb’s general solution is employed 
to obtain the displacement field of an elastic incompressible sphere when arbitrary 
axisymmetric stress distributions are specified along the boundary. 

The derivation of the series solution for the displacement field of an elastic incom- 
pressible sphere under axisymmetric surface tractions and the lubrication-theory 
equations are given in $2.  In  $ 3  the present model is compared with the previous 
theories of Lighthill (1968) and Fitz-Gerald (1969) and the numerical results are 
discussed in 5 4. 

2. Formulation 
Consider an elastic incompressible particle of initially spherical shape moving 

axisymmetrically with a uniform velocity U through a fluid-filled circular cylindrical 
tube of radius ro. The initial radius a of the particle is supposed to be comparable with 
or slightly greater than the radius of the cylindrical tube. The suspending fluid is 
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assumed to be incompressible and Newtonian with uniform viscosity ,Y and uniform 
density p, which is taken to be equal to  the density of the particle. The mean velocity 
V of the suspension is assumed to be maintained a t  a constant value by the application 
of a constant pressure difference Ap over some length including the particle. 

The inertial terms are neglected in the Navier-Stokes equations and the motion of 
the suspending fluid is considered to be a steady Stokes flow relative to the particle. 
The equations of Stokes flow are 

where v is the velocity vector and pf is the pressure in the fluid region. Subscripts f 
and s are used to identify the variables in the fluid and solid regions respectively. The 
equation of continuity is v . v  = 0. 

pv2v = vpf, (2.1) 

(2.2) 

The clearance between the particle and the circular tube is assumed to be sufficiently 
small that lubrication theory may be applied. Under these assumptions the equations 
of motion (2.1) and continuity (2.2) reduce to the Reynolds equation of lubrication 
theory. When referred to the cylindrical co-ordinate system (R, #, 2) fixed to the centre 
of the particle (Fitz-Gerald 1969), this Reynolds equation is 

2ro 
- h2 ) ] [ ?$; 4 In (1 - h/ro) 

-' [ 2r; - 2r0 h + h2 + 
dz 

(2-3) 
where h is the thickness of the gap between the particle and the tube walls and 

Q = &o(U- V )  
is the leakback. 

For the flow of a neutrally buoyant particle, the particle velocity U and the mean 
velocity of flow V cannot be assigned independently. The resultant force on a neutrally 
buoyant particle due to pressures and viscous stresses exerted by the fluid must be 
equal to zero. Consider the equilibrium of a control volume of the suspending fluid 
bounded by the tube wall, the particle surface and two planes tangential to the particle 
at the downstream and upstream ends. Since the motion of the suspending fluid is a 
steady Stokes flow, the resultant of the hydrodynamic forces acting along the bound- 
aries of the control volume must be equal to zero. A neutrally bouyant particle exerts 
zero force on the control volume. Thus the resultant of the pressures acting over the 
downstream and upstream faces of t,he control volume, i.e. the force due to the pressure 
drop, must be equal and opposite to the resultant of shear stresses acting along the tube 
wall (figure 1): 

nr; b( -a)-p(a)I = 277 (2.4) 

The determination of the steady-state surface shape of the particle and the stress 
system in the particle requires the solution of the equations of equilibrium of an elastic 
incompressible solid with shear modulus G ,  

V2u = G-lVpS, 

v.u = 0, 
and the equation of continuity, 

for the displacement vector u and the pressure p8 in the solid region. 
1-3 
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l R  

FIGURE 1. Elastic incompressible particles with a spherical shape in the unstressed stah translate 
concentrically through a circular cylinder. 

Equations (2 .3) - (2 .6)  are coupled by the following requirements. 
(i) Along the particle surface there must not be a discontinuity in the stress vector: 

".as = maf, (2 .7 )  

where n is the unit normal vector on the surface. 

taken into account: 
(ii) The dependence of h in (2 .3 )  and (2 .4 )  on the surface displacements must be 

h = r,,-R,-u,, (2 .8 )  

where R, is the radial co-ordinate of the particle surface and u, is the displacement in 
the R direction along the surface R = Rp. 

The preceding equations are non-dimensionalized by introducing the following 
dimensionless variables and parameters: 

F = r/a = dimensionless position vector, 

a = aV = dimensionless gradient operator, 

6 = h/ro = dimensionless clearance, 

p f  = p f / G  = dimensionless fluid pressure, 

r3ij  = vij/G = dimensionless stress tensor, 

where G is the shear modulus of the elastic particle, 

A = pUa/Grg = velocity parameter, 

Ai = a/ro = initial diameter ratio, 

C = 2&/Ur0 = leakbackparameter. 

Upon writing (2 .3)  and (2 .4)  in terms of these dimensionless variables we obtain 

(2 .10)  
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The dimensionless forms of the equations of equilibrium and continuity for the 
elastic particle are 

where 
v25 = vps, a.5 = 0, (2.11),  (2.12) 

5 = u/a = dimensionless displacement vector, 

j j s  = ps/G = dimensionless pressure in the solid. 

The system of equations (2.9)-(2.12) may be solved by a procedure of successive 
approximations for the unknowns : the displacement vector 5, the dimensionless 
pressures j j s  and Pf and A or C, whichever is not specified. 

In  order to start the numerical iteration procedure, suppose that the steady-state 
surface shape of the particle is estimated. Then the Reynolds equation (2.9) and the 
condition (2.10) of zero drag on the particle, which is in the form of an integral equation, 
are readily solved to yield the pressures and viscous stresses in the fluid. The elastic 
particle experiences additional displacements and attains a surface shape different 
from the previous approximation under the action of these lubrication pressures and 
viscous stresses. A combination of the previous and current surface shapes which 
facilitates numerical stability is then adopted for the determination of the configura- 
tion at the next step of the successive approximations. The computational cycle is 
repeated until the additional displacements become sufficiently small and the desired 
degree of accuracy in the displacements is achieved. 

In  the remainder of this section, the formulation of the method of series solution 
used to evaluate the displacement field of an elastic sphere subject to stress boundary 
conditions is given. 

It is shown by Lamb (1945, chap. 8) that (2 .5 )  and (2.6) admit the following general 
solution in spherical co-ordinates ( r ,  8,$,) in a bounded region: 

(2.13 b )  

where xn, $n and pn are spherical solid harmonics of order n. 
Lamb's general solution simplifies considerably for axisymmetric deformations, 

particularly when there is no component of displacement perpendicular to the meridian 
planes. Under these conditions, azimuthal displacements u4 and derivatives with 
respect to the azimuthal angle # vanish and the terms involving the solid spherical 
harmonic xn drop out. The reduced solution in dimensionless variables is 

(2.14) 

ii4 = 0, (2.16) 

m 

$8 = 2 An+nPn(P), 
n= 1 

where p = cos 8 and Pn(p) is the Legendre polynomial of order n. 

(2.17) 



6 H .  Tozeren and R. Skalak 

The stress vector t acting at the surface of the sphere can be shown to be (Love 
1944, p. 258) 

t = n.as = ma, = -pser+G +-V(r.u) . { (E :) : )r=a 
(2.18) 

By means of (2.14)-( 2.17), (2.18) can be expressed in the dimensionless form 

(2.19) 
2 B n ( n - 1 ) n  n 2 - n - 3  

" =  ' ( a2 + 2 n + 3  An) pn(p), 
n= 1 

(2 .20)  
2 B n ( n - 1 )  n ( n + 2 )  + (n + 1) ( 2 n  + 3) An) (1  -p2)*p~(p), 

n = l  

where f = t/G = dimensionless traction vector acting on the surface of the particle. 
The interface boundary conditions (2.18) may be used to determine the unknown 
coefficients An and B,. 

Equations (2 .19)  and (2 .20)  suggest a Legendre series expansion for the radial 
surface traction, 

(2 .21)  

and a Ferrer series expansion for the tangential surface traction, 

In  order to determine the coefficients Cn and Dn of the Legendre and Ferrer series 
respectively, (2 .18)  is used to evaluate f along the interface and the relevant integrals 
in (2 .21)  and (2 .22)  are computed by numerical integration. 

The determination of A,  and B, reduces to the solution of the system of equations 

2 B n n ( n - 1 )  n 2 - n - 3  
A n = C n ,  n = i , 2  ,..., 

a2 2 n + 3  
(2.23) 

After straightforward manipulations (2.23) and (2 .24)  are transformed into two sets of 
infinite equations expressing A ,  and B,, individually, in terms of D, and C,. Solution 
of these equations, substitution in (2.14)-(2.17) and summation gives the displacement 
field of an elastic incompressible sphere subject to previously assigned surface tractions 
(2.18).  

The infinite systems of Iinear equations are truncated after the 35th equation in 
order to be consistent with the 35-point Gauss-Legendre quadrature used to evaluate 
the coefficients Cn and D,. There are computational errors due to truncation, the 
numerical integration scheme and the five-point closed integration formula based on 
backward differences used for the integration of the Reynolds equation. Successive 
approximations are terminated when three significant figures are obtained for the 
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displacement field within the particle and for the critical gap thickness. The iterative 
method of solution described above is reasonably convergent if a good estimate of the 
steady-state surf'ace shape of the particle is available. 

3. Comparison with previous work 
Lighthill (1 968) and Fitz-Gerald (1 969) have investigated the steady motion of 

tightly fitting elastic pellets in a fluid-filled circular cylindrical tube as a possible model 
for the flow of red blood cells in narrow capillary tubes. In  this section the basic 
assumptions and results of these studies are discussed and compared with the present 
treatment. 

In  the studies of Lighthill (1968) and Fitz-Gerald (1 9659, the displacements along 
the surface of the particle were measured from a reference configuration that the 
particle was supposed to occupy initially under the application of a uniformly distri- 
buted reference pressure po. The shape of the particle in the reference configuration 
was taken to be a spheroid whose diameter perpendicular to the tube axis was equal to 
the diameter of the cylindrical tube. Moreover, these compressible particles were 
deflected radially (in the sense of cylindrical co-ordinates) by amounts proportional to 
the local pressures applied. 

An important difference between the present treatment and the studies of Lighthill 
(1968) and Fitz-Gerald (1969) lies in the form of the equation expressing the condition 
of zero drag on the particle. Lighthill (1968) and Fitz-Gerald (1969) assumed that 
the force due to the pressure drop across the particle is approximately equal to the 
resultant of the shear stresses acting along the surface of the particle, i.e. 

rP( - a )  - m)l n3 = 2 n  y a  Rp [7RzlR = np dz. (3.1) 

The difference between (3.1 ) and the exact zero-drag condition ( 2 . 4 )  can be shown to be 
significant by the use of singular asymptotic expansions derived by Bungay & Brenner 
(1973) for closely fitting rigid spheres. 

Bungay & Brenner (1973) considered the asymmetric flow past an eccentrically 
located rigid sphere in a circular cylindrical tube filled with incompressible Newtonian 
fluid. Asymptotic expansions in terms of a perturbation parameter E = (ro - a)/. for 
the hydrodynamic force on the particle on the tube wall and the pressure drop across 
the particle are developed for the case of Stokes flow past a stationary sphere ( U  = 0,  
V + 0) and for a sphere translating through an otherwise quiescent fluid ( U  + 0, 
V = 0) ,  where U and V are the particle and average flow velocities respectively. 

For a concentrically positioned sphere, the force ApA due to the pressure drop across 
the particle is given by Bungay & Brenner (1 973) as 

when U + 0, V = 0 ands+O and as 

when U = 0, V + 0 and E -+ 0, where p is the fluid viscosity, a is the particle radius and 
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A = nr;. The subscripts t and s indicate, respectively, the cases (i) U + 0, V = 0 and 
(ii) U = 0, V $: 0. 

The resultant force Fw due to shear stresses acting along the tube wall is evaluated 
by Bungay (1970): 

FP = - 3 ~ 2 4 n 2 p ~ U € ~ ( l + ~ s ) + O ( i )  (3.4) 

ly = 3 x 24n2pa V€+( 1 + *€) + O( 1) (3.5) 

when U $: 0, V = 0 and €3 0 ;  

whenU=O, V+Oands+O. 
Since the governing differential equations and the boundary conditions are linear, 

the asymptotic expansions for the pressure drop and the resultant of the shear on the 
tube evaluated for the cases (i) U = 0,  V =+ 0 and (ii) U + 0, V = 0 can be superposed 
to obtain the corresponding expansions for more general flow conditions, i.e. U .i: 0, 
V + 0. In  particular, for the case of a neutrally buoyant particle, the zero-drag con- 
dition (2.4) may be used to determine the mean flow velocity in terms of the particle 

(3.6) 
velocity in the series form 

Substitution of (3.6) into (3.3) and the addition of (3.2) yield the force due to the 
pressure drop across the neutrally buoyant particle: 

V = u(1-$€++2)+0(€~).  

ApnA = 4 x 247r2paUe-3+0(1), (3.7) 

where subscript n indicates that the rigid sphere is taken to be neutrally buoyant. 
The use of (3.1), which was formulated by Lighthill (1968) to represent the condition 

of zero drag on the particle, instead of (2.4) yields an asymptotic expansion for the 
force due to the pressure drop across the particle which is substantially different from 
(3.7). In  order to establish the explicit relationship between U and V by the use of 
(3.1), it is essential that the asymptotic expansions for the resultant Fs of the shear 
stresses acting along the particle for the cases (i) U + 0, V = 0 and (ii) U = 0, V + 0 
be determined: 

Calculations of the hydrodynamic force on the particle due to pressures and viscous 
stresses have been carried out by Bungay (1970), however the contribution of shear 
stresses alone has not been presented separately. For the present purposes, we have 
used the asymptotic expansions developed by Bungay (1970) for the velocity com- 
ponents to determine the shear stresses acting along the surface of the particle and 
performed the integration in (3.8) to obtain 

Fg = 3 x 2 4 n 2 p ~ U d (  - 1 +A&%) + O(1) (3.9) 

w h e n U 4 0 ,  V=Oandc+Oand 

Fi = 3 x 24n2p  V&( 1 - ?&) + O( 1 ) (3.10) 

when U = 0, P $: 0 and E + O .  Equations (3.9) and (3.10) are substituted into (3.1) in 
order to  determine the mean flow velocity in this case: 

V = U(1--+++2)+0(&) as €-to. (3.11) 
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FIGURE 2. Pressure distributions along the surface of rigid spherical particles computed by 
lubrication theory. The pressure is normalized with Ap,  the pressure drop across the particle. 

h P .  P w  P8 
0.994 607.9 608.2 79.0 
0.996 768.7 768.5 84.2 
0.998 1125.3 1124.8 107.1 

E .  = n q p a U ] - l [ p (  -a) - p ( a ) ]  
- 

r~[7RzIR,r0 dz 
l a  

F" = 2n[paU]-' 

p8  = 2n[paU1-' / I a R n [ 7 R z l R - R p  

TABLE 1. Rigid-particle parameters. 

Then the force due to the pressure drop across the particle is found by superposition as 

A p n A =  O(1) as e+O. (3.12) 

The discrepancy between (3.7) and (3.12) is due to the neglect of the effects of rapidly 
varying pressures in the vicinity of the minimum gap thickness by Lighthill (1968) and 
Fitz-Gerald (1969). These pressures act over a length o(1). However, they exert a 
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FIamE 3. Comparison of D'ff8. 3" curves for several different values of A': ---, Lighthill 
(1968); -.-.-, Fitz-Gerald (1969); - , corresponding curves obtained by the application of 
their theory with the corrected zero-drag condition. 

resultant force O(E-4) on the particle in the axial direction (see figure 2). To demon- 
strate some typical numerical values, lubrication theory has been used to calculate the 
force P p  due to the pressure drop, the resultant force pw on the tube wall and the 
force on the particle due to  shear stresses in dimensionless form for rigid spheres of 
various sizes. Some sample results are given in table 1.  These numerical values agree 
well with predictions obtained from the above asymptotic analysis using (3.4)-(3.10). 

It is interesting to compare the results of the studies of Lighthill (1968) and Fitz- 
Gerald (1969) and a modified theory where (3.1) is replaced by (2.4). It is convenient to 
introduce several dimensionless parameters defined by Lighthill (1 968) and Fitz- 
Gerald ( 1  969): 

B' = /3b(a) -po]/ro = clearance parameter, 

P' = /3[t@(a) +p( -a ) )  -po]/ro = clearance parameter, 

A' = ,uU/3/ri(kro)4 = velocity parameter, 

D' = h( -a)  -&)I ro(kro)t/,uU = resistance parameter, 
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where p is the viscosity of the fluid, p is the compliance of the flexible particle and k is 
the eccentricity of the elliptical cross-section. The resistance parameter D' is equal to 
one-sixteenth of the ratio of the pressure drop across the particle to the pressure drop in 
Poiseuille flow with mean velocity U. Figure 8 of Lighthill (1968) shows D' ws. B' 
curves for several constant values of A'. For positive clearance (B' > 0) very low 
resistances (D' < 16), smaller than the resistance experienced by the equivalent 
Poiseuille flow, are predicted which are not possible for a suspension of solid particles 
(Skalak 1970). 

Figure 3 shows D' w8. P' curves for constant values of A' computed using the zero- 
drag condition (2.4). Also shown in figure 3 for comparison are curves from figure 8 of 
Lighthill (1968) and figure 4 of Fitz-Gerald (1969) for the same values of A'. Figure 3 
shows that the pressure differences predicted by Lighthill are always less than the 
values evaluated with the use of (2.4) for comparable parameter values. The reasons 
for the disagreement are clear from the asymptotic analysis given earlier in this section. 

In  the shear-stress expression used by Fitz-Gerald (1969, equation 3.6) there is also 
an error in sign. This caused an overestimation of the resultant of the shear stresses on 
the particle. As a result, unrealistically high values of the additional pressure drop per 
particle are predicted in all cases as can be seen in figure 3. 

4. Numerical results and discussion 
This section is concerned with the numerical results obtained from the theory 

developed in $2, in which each particle is considered as an elastic continuum. The 
initial diameter ratio hi = a/ro and the velocity parameter A = pUa/Gr& which 
incorporates the effects of the particle velocity U ,  the viscosity of the suspending 
fluid p and the shear modulus of the elastic particle G, are chosen as the independent 
parameters. The deformations of the elastic particle and the state of stress in the fluid 
and solid phases are determined for various values of hi and A .  

It is expedient to present the numerical results in terms of dimensionless variables. 
The relative apparent viscosity 7 will be used to represent the pressure drop Ap over a 
length Az including one particle. The particle spacing is taken to be equal to one particle 
diameter 2a. The relative apparent viscosities computed thus apply to a line of spheres 
in contact with each other. Accordingly 

7 = Ap/(16pV./3), (4.1) 

where the denominator 16pVa/rt is the pressure drop in a length 2a of a Poiseuille 
flow of the suspending fluid with the same mean velocity V in the absence of suspended 
particles. 

Lubrication theory, which is assumed to be valid here, predicts Poiseuille flow in 
the space between the particles. Under this approximation, the relative apparent 
viscosities for arbitrary particle spacings may be obtained by averaging the results 
given here for a line of spheres which are just touching each other with 7 = 1 for the 
length in which the particles are absent. 

The results for the elastic deformation of the particle are given in terms of the final 
diameter ratio A,, which is defined as the ratio of the maximum radius of t,he deformed 
particle to the tube radius. Finite deformations of the elastic particle are not treat'ed by 
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0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 

A ,  

FIGURE 4. Relative apparent viscosity 7 us. initial diameter ratio A, for various values of the 
velocity parameter A .  The spacing between particles is one particle diameter d = 2a. Each 
particle is an elastic sphere. 

the present theory, which is based on the assumptions,of the linear theory of elasticity. 
Hence solutions are sought in the ranges 0.9 < At < 1.05 and 0 < A < 10-3. Deforma- 
tions are then of the order of 5 %. 

Figure 4 shows the relative apparent viscosity 7 as a function of the initial diameter 
ratio hi for several values of the velocity parameter A .  The curve A = 0 gives the 
solutions for a rigid sphere. All of the curves A = constant approach each other for 
initial diameter ratios Ai below 0.96. For smaller initial diameter ratios there is very 
little deformation of the particles for the range of A assumed. For higher values of Ai, 
the curves for different values of A separate and elastic deformations of the particle 
become an important factor in the determination of the flow and pressure character- 
istics of the suspension. 

Figure 5 shows the final diameter ratio of the particle A, plotted against the initial 
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I .oo 
3.5 x 1 0 - 4  - 5~ 1 0 - 4  

- 5~ 10-3 

-- 0.95 

0.90 
0.90 0.95 I .oo I .05 

A ,  

F I G ~ E  5. Final diameter ratio Af us. initial diameter ratio hi for several values of the velocity para- 
meter A .  The particle spacing is one particle diameter d = 2a. Each particle is an elastic sphere. 

At 

0.980 
0.990 
0.995 
1.000 
1.008 
1.015 
1-029 
1.044 
1.050 

A, 
0-9796 
0.9878 
0.99 11 
0.9934 
0.9943 
0.9946 
0.9948 
0.9952 
0.9958 

71 
5.83 
8.34 

10.10 
11-86 
14.07 
14.41 
14.79 
16-03 
17-20 

C 

0.02624 
0.01387 
0.01175 
0.00905 
0.00772 
0.00769 
0.00766 
0-00737 
0-00705 

TABLE 2. Elastic-particle parameters : relative apparent viscosity 7, final diameter ratio A, 
and leakback parameter C for A = 10-4 and various values of initial diameter ratio Ai (see the 
pressure curves, figure 7 ) .  

diameter ratio hi for various A .  When the maximum radius of the deformed particle 
is almost equal to the radius of the tube (see curve for A = 5 x loF5 in figure 5) ,7  (see 
figure 4) tends to infinity very rapidly. For sufficiently large values of A and hi, the 
curves of A, in figure 5 may intersect A, = 1 at a finite value of Ai. Then 7 may approach 
infinity along a curve A = constant with a vertical asymptote passing through this 
particular value of hi in figure 4 (see curve for A = 5 x 10-5 in figure 4). It has been 
suggested by Lighthill ( 1  968) that a similar phenomenon is possible in capillary blood 
flow, namely that velocities below a certain minimum value cannot be attained in 
sufficiently narrow capillaries because of the failure of the hydrodynamic lubrication 
and consequent seizing up of the red blood cells. The results of the present study 
support the possibility of this phenomenon. 

In figure 6, is shown as a function of A for several values of hi. For hi < 0.98, over a 
wide range of A ,  7 remains nearly constant along curves hi = constant since there are 
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FIGURE 6. (a) Relative apparent viscosity q computed for a line of elastic spheres with a uniform 
spacing of one particle diameter as a function of the velocity parameter A for several values of 
the initial diameter ratio Ad. ( b )  Curves A, = constant for a wider range of the velocity para- 
meter: 0 < A < 

essentially no elastic deformations. However, for closely fitting particles and particu- 
larly when the diameter of the particle is greater than the diameter of the tube, 7 is 
strongly dependent on the velocity parameter A and initial diameter ratio hi. 

Pigure 7 shows dimensionless pressure curves for A = 10-4 and several values of the 
initial diameter ratio hi. The corresponding dimensionless parameters are listed in 
table 2. In  the range 1.008 < hi < 1.05, the variations in relative apparent viscosity 
are small (see figure 4); however, the pressure curves in figure 7 differ significantly for 
different values of h,. The curve5 in figure 7 for elastic particles are seen to be less 
symmetric than those for rigid spheres shown in figure 2. This is typical for elastic 
particles. 
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FIGURE 7. Dimensionless pressure curves for A = 10"' and several values of the initial diameter 
ratio hi. The relevant dimensionless parameters are listed in table 2. Compare this figure with 
figure 2, which is for rigid spheres. 

The numerical results presented above have not yet been confirmed by any detailed 
experiments, but could perhaps be verified by using rubber spheres in oil-filled tubes. 
For either red or white blood cells, exact measurements are not feasible because of 
the extremely small clearances involved. However, the qualitative results may be 
used to interpret gross measurements of apparent viscosities and to make theoretical 
predictions for networks of capillaries. 
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Addendum, by M. J. Lighthill 
I am most grateful to Dr Tozeren and Dr Skalak for pointing out correctly the many 

unsatisfactory features of the mathematical model originated by Lighthill (1 968). 
Over the past decade, I had myself increasingly come t#o appreciate the model's 
complete lack of any quantitative value, and I welcome the opportunity to affirm this. 
I should remark at the same time t.hat the essential qualitative nature of the theoretical 
approach to blood flow in capillaries, which was all I described in my book (Mathe- 
matical Biofluiddynamics, SIAM, 1975, chap. 14), remains correct. Excess pressures in 
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lubricating layers of small thickness h are of order ,uU/h2. These can generate the 
required large deformation of a red blood cell moving at  speed U in a very narrow 
capillary if and only if the thickness h varies as U4. The required pressure drop is of 
orderpU/h and therefore also varies as U*. As noted in the book, a substantial measure 
of observational evidence supports these qualitative statements. 
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